7.4 Relative Rates of Growth
This section is about comparing functions to see which dominate as \(x \to \infty \).

Definition

Let \(f(x) \) and \(g(x) \) be positive for some sufficiently large \(x \).
1. \(f \) grows faster than \(g \) as \(x \to \infty \) if
 \[
 \lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty
 \]
2. \(f \) grows slower than \(g \) as \(x \to \infty \) if
 \[
 \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0
 \]
3. \(f \) grows at the same rate as \(g \) as \(x \to \infty \) if
 \[
 \lim_{x \to \infty} \frac{f(x)}{g(x)} = L
 \] where \(L \) is finite and positive.
Domination

This section is about comparing functions to see which dominate as $x \to \infty$.

Definition

Let $f(x)$ and $g(x)$ be positive for some sufficiently large x.

1. f grows faster than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

2. f grows slower than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$
This section is about comparing functions to see which dominate as $x \to \infty$.

Definition

Let $f(x)$ and $g(x)$ be positive for some sufficiently large x.

1. f grows faster than g as $x \to \infty$ if

 $$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

2. f grows slower than g as $x \to \infty$ if

 $$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

3. f grows at the same rate as g as $x \to \infty$ if

 $$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$
Example
Which grows faster: e^x or x?
Example
Which grows faster: e^x or x?

Hint: Use L’Hospital’s Rule
Example

Which grows faster: e^x or x?

Hint: Use L’Hopital’s Rule

e^x grows faster than x
Which Grows Faster?

Example

Which grows faster: e^x or x^{20}?
Which Grows Faster?

Example

Which grows faster: e^x or x^{20}?

e^x grows faster than x^{20}
Example

Which grows faster: e^x or x^{20}?

e^x grows faster than x^{20}

Can we generalize this?
Example

Which grows faster: 2^x or 4^x?
Which Grows Faster?

Example

Which grows faster: 2^x or 4^x?

2^x grows slower than 4^x
Which Grows Faster?

Example

Which grows faster: 2^x or 4^x?

2^x grows slower than 4^x

Can we generalize this?
Which Grows Faster?

Example

Which grows faster: \(\ln(x) \) or \(x \)?
Example
Which grows faster: \(\ln(x) \) or \(x \)?

\(\ln(x) \) grows slower than \(x \)
Example
Which grows faster: \(\log_3 x \) or \(\log_2 x \)?
Example

Which grows faster: \(\log_3 x \) or \(\log_2 x \)?

\(\log_3(x) \) grows at the same rate as \(\log_2(x) \)
Example

Which grows faster: $\log_3 x$ or $\log_2 x$?

$log_3(x)$ grows at the same rate as $\log_2(x)$

$$\log_3(x) = \frac{\log(x)}{\log(3)}$$
Which Grows Faster?

Example

Which grows faster: \(\log_3 x \) or \(\log_2 x \)?

\(\log_3(x) \) grows at the same rate as \(\log_2(x) \)

\[
\log_3(x) = \frac{\log(x)}{\log(3)} \\
\log_2(x) = \frac{\log(x)}{\log(2)}
\]
Which grows faster: \(\log_3 x \) or \(\log_2 x \)?

\(\log_3(x) \) grows at the same rate as \(\log_2(x) \)

\[
\begin{align*}
\log_3(x) &= \frac{\log(x)}{\log(3)} \\
\log_2(x) &= \frac{\log(x)}{\log(2)}
\end{align*}
\]

\[
\lim_{x \to \infty} \frac{\log(x)}{\log(3)} = \frac{\log(x)}{\log(2)}
\]
Which Grows Faster?

Example

Which grows faster: \(\log_3 x \) or \(\log_2 x \)?

\(\log_3 (x) \) grows at the same rate as \(\log_2 (x) \)

\[
\begin{align*}
\log_3 (x) &= \frac{\log(x)}{\log(3)} \\
\log_2 (x) &= \frac{\log(x)}{\log(2)} \\
\lim_{x \to \infty} \frac{\log(x)}{\log(3)} &= \frac{\log(2)}{\log(3)}
\end{align*}
\]
Comparisons

Sometimes it is easier to show functions grow at the same rate by comparing them to a common function.
Comparisons

Sometimes it is easier to show functions grow at the same rate by comparing them to a common function. Consider $\sqrt{x^2 + 1}$ vs. $\sqrt[3]{2x^3 + 1}$. Differentiating would be a pain, so we wouldn’t want to use L’Hopital’s Rule, but we could use something simple, like x.

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x} =$$
Comparisons

Sometimes it is easier to show functions grow at the same rate by comparing them to a common function. Consider $\sqrt{x^2 + 1}$ vs. $\sqrt[3]{2x^3 + 1}$. Differentiating would be a pain, so we wouldn’t want to use L’Hopital’s Rule, but we could use something simple, like x.

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x} = \lim_{x \to \infty} \sqrt{\frac{x^2}{x^2} + \frac{1}{x^2}} = 1$$
Sometimes it is easier to show functions grow at the same rate by comparing them to a common function. Consider $\sqrt{x^2 + 1}$ vs. $\sqrt[3]{2x^3} + 1$. Differentiating would be a pain, so we wouldn’t want to use L’Hopital’s Rule, but we could use something simple, like x.

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x} = \lim_{x \to \infty} \sqrt{\frac{x^2}{x^2} + \frac{1}{x^2}} = 1$$

$$\lim_{x \to \infty} \frac{\sqrt[3]{2x^3} + 1}{x} = \sqrt[3]{2} + \frac{1}{x^3} \to 0$$
Sometimes it is easier to show functions grow at the same rate by comparing them to a common function. Consider $\sqrt{x^2 + 1}$ vs. $\sqrt[3]{2x^3 + 1}$. Differentiating would be a pain, so we wouldn’t want to use L’Hopital’s Rule, but we could use something simple, like x.

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x} = \lim_{x \to \infty} \sqrt{\frac{x^2 + 1}{x^2}} = 1$$

$$\lim_{x \to \infty} \frac{\sqrt[3]{2x^3 + 1}}{x} = \lim_{x \to \infty} \sqrt[3]{\frac{2x^3 + 1}{x^3}} = \sqrt[3]{2}$$

Since they both grow at the same rate, we conclude that $\sqrt{x^2 + 1}$ and $\sqrt[3]{2x^3 + 1}$ grow at the same rate.
Sometimes it is easier to show functions grow at the same rate by comparing them to a common function. Consider $\sqrt{x^2 + 1}$ vs. $\sqrt[3]{2x^3 + 1}$. Differentiating would be a pain, so we wouldn’t want to use L’Hopital’s Rule, but we could use something simple, like x.

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x} = \lim_{x \to \infty} \sqrt{\frac{x^2}{x^2} + \frac{1}{x^2}} = 1$$

$$\lim_{x \to \infty} \frac{\sqrt[3]{2x^3 + 1}}{x} = \lim_{x \to \infty} \sqrt[3]{\frac{2x^3}{x^3} + \frac{1}{x^3}} = \sqrt[3]{2}$$

Since they both grow at the same rate as the same function, we conclude that $\sqrt{x^2 + 1}$ and $\sqrt[3]{2x^3 + 1}$ grow at the same rate.
A function f is of **smaller order** than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

We indicate this by writing

$$f = o(g)$$

which is read “f is little oh of g”.
A function f is of smaller order than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

We indicate this by writing

$$f = o(g)$$

which is read “f is little oh of g”.

Example

$$x = o(e^x)$$
Definition

Let $f(x)$ and $g(x)$ be positive for sufficiently large x. Then f is at most the order of g as $x \to \infty$ if there is a positive integer M for which

$$\frac{f(x)}{g(x)} \leq M$$

for x sufficiently large, We indicate this by writing

$$f = O(g)$$

which is read “f is big oh of g”.
Definition

Let $f(x)$ and $g(x)$ be positive for sufficiently large x. Then f is \textbf{at most the order of} g as $x \to \infty$ if there is a positive integer M for which

$$\frac{f(x)}{g(x)} \leq M$$

for x sufficiently large, We indicate this by writing

$$f = O(g)$$

which is read “f is big oh of g”.

Example

$x = O(e^x)$ because $\frac{x}{e^x} \to 0$ as $x \to \infty$, i.e. we can select an M.